mleko.dataset.transform.frequency_encoder_transformer
#
Module for the frequency encoder transformer.
Module Contents#
Classes#
Transforms features using frequency encoding. |
Attributes#
A module-level logger for the module. |
- mleko.dataset.transform.frequency_encoder_transformer.logger#
A module-level logger for the module.
- class mleko.dataset.transform.frequency_encoder_transformer.FrequencyEncoderTransformer(features: list[str] | tuple[str, Ellipsis], unseen_strategy: Literal[zero, nan] = 'nan', cache_directory: str | pathlib.Path = 'data/frequency-encoder-transformer', cache_size: int = 1)#
Bases:
mleko.dataset.transform.base_transformer.BaseTransformer
Transforms features using frequency encoding.
Initializes the transformer.
Uses the vaex.ml.FrequencyEncoder transformer, which encodes categorical features using the frequency of their respective samples. If a value is not seen during fitting, it will be encoded as zero or nan, depending on the unseen_strategy parameter. Missing values will be encoded as nan, but will still count towards the frequency of other values.
Warning
Should only be used with categorical features. High cardinality features are not recommended as they will result in very small frequencies.
- Parameters:
features (list[str] | tuple[str, Ellipsis]) – List of feature names to be used by the transformer.
unseen_strategy (Literal[zero, nan]) – Strategy to use for unseen values once the transformer is fitted.
cache_directory (str | pathlib.Path) – Directory where the cache will be stored locally.
cache_size (int) – The maximum number of entries to keep in the cache.
Examples
>>> import vaex >>> from mleko.dataset.transform import FrequencyEncoderTransformer >>> from mleko.utils.vaex_helpers import get_column >>> df = vaex.from_arrays( ... a=["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"], ... b=["a", "a", "a", "a", None, None, None, None, None, None], ... c=["a", "b", "b", "b", "b", "b", None, None, None, None], ... ) >>> ds = DataSchema( ... categorical=["a", "b", "c"], ... ) >>> _, _, df = FrequencyEncoderTransformer( ... features=["a", "b"], ... ).fit_transform(ds, df) >>> df["a"].tolist() [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] >>> df["b"].tolist() [0.4, 0.4, 0.4, 0.4, nan, nan, nan, nan, nan, nan]
- _fit(data_schema: mleko.dataset.data_schema.DataSchema, dataframe: vaex.DataFrame) tuple[mleko.dataset.data_schema.DataSchema, vaex.ml.FrequencyEncoder] #
Fits the transformer on the input data.
- Parameters:
data_schema (mleko.dataset.data_schema.DataSchema) – The DataSchema of the DataFrame.
dataframe (vaex.DataFrame) – The DataFrame to fit the transformer on.
- Returns:
Updated DataSchema and the fitted transformer.
- Return type:
tuple[mleko.dataset.data_schema.DataSchema, vaex.ml.FrequencyEncoder]
- _transform(data_schema: mleko.dataset.data_schema.DataSchema, dataframe: vaex.DataFrame) tuple[mleko.dataset.data_schema.DataSchema, vaex.DataFrame] #
Transforms the features in the DataFrame using frequency encoding.
- Parameters:
data_schema (mleko.dataset.data_schema.DataSchema) – The DataSchema of the DataFrame.
dataframe (vaex.DataFrame) – The DataFrame to transform.
- Returns:
Updated DataSchema and the transformed DataFrame.
- Return type:
tuple[mleko.dataset.data_schema.DataSchema, vaex.DataFrame]
- _fingerprint() Hashable #
Returns the fingerprint of the transformer.
Append the unseen_strategy to the fingerprint.
- Returns:
A hashable object that uniquely identifies the transformer.
- Return type:
Hashable